令和6年度

事業報告書

自 令和 6年 4月 1日 至 令和 7年 3月 31日

公益財団法人大澤科学技術振興財団

令和6年度(2024)事業報告書(令和6年4月1日から令和7年3月31日まで)

I 管理業務の実施

- 1. 評議員会の開催
 - (1) 令和6年度定時評議員会

日 時:令和6年6月6日

場 所:愛知県豊川市本野ケ原3-22

オーエスジー株式会社 第1会議室

報告事項:・令和5年度事業報告及び事業報告の附属明細書

主要議案:・令和5年度財務諸表(貸借対照表・正味財産増減計算書)及び

附属明細書並びに財産目録の承認

・評議員6名の選任

・理事4名並びに監事1名の選任

2. 理事会の開催

(1) 令和6年度第1回理事会(決議の省略)

日 時:令和6年5月15日

主要議案:・令和5年度事業報告及び事業報告の附属明細書の承認

- ・ 令和 5 年度財務諸表(貸借対照表・正味財産増減計算書)及び附 属明細書並びに財産目録の承認
- 評議員選任候補者の選出
- ・役員(理事及び監事)選任候補者の選出
- ・令和6年度定時評議員会の招集の決定
- (2) 令和6年度第2回理事会(決議の省略)

日 時:令和6年5月27日

主要議案:・評議員選任候補者名簿の変更

(3) 令和6年度第3回理事会

日 時:令和6年6月6日

場 所:愛知県豊川市本野ケ原3-22

オーエスジー株式会社 第1会議室

主要議案:・理事長及び常務理事の選定

報告事項:令和5年度第4回理事会(令和6年3月19日)以降の職務執行

状況について

(4) 令和6年度第4回理事会(決議の省略)

日 時:令和6年7月16日

主要議案:・令和6年度の助成先の決定

(5) 令和6年度第5回理事会(決議の省略)

日 時:令和7年2月5日

主要議案:・オーエスジー株式会社の定時株主総会において議決権行使の権

限を理事長に委任すること

(6) 令和6年度第6回理事会

日 時:令和7年3月13日

場 所:愛知県豊川市本野ケ原3-22

オーエスジー株式会社 社長室

主要議案:・令和7年度事業計画・収支予算等の承認

・基本財産の組入れ

報告事項: 令和6年度第3回理事会(令和6年6月6日)以降の職務執行状況 について

- 3. 官庁関係事務の処理
 - (1) 令和5年度事業報告等の提出(内閣府) 令和6年6月27日
 - (2) 令和7年度事業計画書及び収支予算書等の提出(内閣府)令和7年3月24日
- 4. その他の主要業務
 - (1) 令和5年度の財務諸表等及び業務執行状況の監事監査

実施日 令和6年4月15日

※計算書類等(貸借対照表及び正味財産増減計算書、事業報告並びにこれらの附属明細書)の作成等は、辻・本郷税理士法人の指導による。

- Ⅱ 研究助成事業(公益目的事業)の実施
 - 1. 助成希望課題の募集および応募の状況等
 - (1) 募集方法

以下の126ヵ所の機関の長あて募集内容について周知方依頼すると共に、精密 工学会誌、日本機械学会誌及び砥粒加工学会誌の会告と財団のホームページに応募 要領を掲載した。

愛知工業大学、青山学院大学、秋田県立大学、足利大学、有明工業高等専門学校、一関工業高等専門学校、茨城大学、岩手大学、宇都宮大学、宇都宮工業高等専門学校、愛媛大学、大阪大学、大阪工業大学、大阪公立大学、大阪産業大学、大阪産業技術研究所、大阪府立大学工業高等専門学校、岡山大学、沖縄工業高等専門学校、

香川大学、核融合科学研究所、鹿児島大学、神奈川大学、神奈川県立産業技術総合 研究所、金沢大学、金沢工業大学、関西大学、関西学院大学、関東学院大学、木更 津工業高等専門学校、北九州市立大学、北見工業大学、岐阜大学、九州大学、九州 工業大学、京都大学、京都工芸繊維大学、近畿大学、熊本大学、久留米工業高等専 門学校、群馬大学、群馬産業技術センター、慶應義塾大学、工学院大学、高知工科 大学、神戸大学、国立天文台、公立小松大学、埼玉大学、埼玉医科大学、埼玉工業 大学、佐世保工業高等専門学校、産業技術高等専門学校、産業技術総合研究所、三 条市立大学、滋賀県立大学、静岡大学、静岡理工科大学、芝浦工業大学、島根大学、 湘南工科大学、信州大学、鈴鹿工業高等専門学校、公立諏訪東京理科大学、成蹊大 学、大同工業大学、千葉大学、千葉工業大学、中央大学、中部大学、筑波技術大学、 電気通信大学、東海大学、東京大学、東京工科大学、東京工業大学、東京電機大学、 東京都市大学、東京都立大学、東京都立産業技術高等専門学校、東京農工大学、同 志社大学、東北大学、徳島大学、鳥取大学、富山大学、富山県立大学、富山高等専 門学校、豊田工業大学、豊田工業高等専門学校、豊橋技術科学大学、長岡技術科学 大学、長岡工業高等専門学校、長崎大学、長野工業高等専門学校、名古屋大学、名 古屋工業大学、奈良工業高等専門学校、新潟大学、日本工業大学、沼津工業高等専 門学校、八戸工業高等専門学校、兵庫県立大学、弘前大学、広島大学、広島工業大 学、福井大学、福井工業高等専門学校、福井県工業技術センター、福島大学、物質・ 材料研究機構、防衛大学校、法政大学、北海道大学、室蘭工業大学、名城大学、も のつくり大学、山形大学、山形県工業技術センター、山梨大学、横浜国立大学、理 化学研究所、立命館大学、龍谷大学、和歌山工業高等専門学校、早稲田大学

(2) 募集期間: 令和6年4月1日~令和6年5月10日

(3) 応募状況: 研究助成 73テーマ 国際交流助成 5件

2. 課題の選考等

(1) 選考委員会幹事会

審査の手順、審査方法等についての確認及び、事前審査の担当委員を決めるため帯川委員長ほかによる「幹事会」を、令和6年5月24日、オーエスジー株式会社東京営業所会議室において開催した。

(2) 事前審査

研究助成部門については、テーマ毎に、正・副 2名の担当委員を定め、応募者の「研究計画申請調書」及び関係の添付資料をそれぞれ担当の委員に送付して、 事前審査を行った。

(3) 選考委員会

選考委員会委員のほか関係者が、令和6年7月13日にホテルアソシア豊橋に

おいて選考委員会を開催し、選考の結果「研究開発関係」33課題、「国際交流関係」5件を採択した。

(4) 助成先の決定

令和6年7月16日付の理事会で選考委員会が採択した研究者に対して助成を 行うことを決定した。助成金額の総額は84,230千円となった。 ※採択課題等は別紙の通り。

(5) 研究助成費の贈呈式

日 時:令和6年11月12日

場 所:愛知県豊川市一宮町宮前149 オーエスジー (株) ゲストハウス 出席者:助成対象の研究者、財団理事長・常務理事・選考委員長等約50名

3. 事業年報の刊行

令和6年度版の事業年報は、令和3年度助成の重点研究報告及び令和4年度助成の研究報告、並びに令和5年度助成の国際交流報告を主な内容として令和6年11月1日に刊行し、研究助成費受賞者をはじめ関係者に配布した。

以上

事業報告書の附属明細書

該当なし

公益財団法人大澤科学技術振興財団 令和6年度助成先一覧

研究開発助成

助成対象者 澤 武一 芝浦工業大学・工学部 教授	テーマ フライス加工におけるエッジ品質予知に関する研究
芝浦工業大学・工学部 教授	フライス加工におけるエッジ品質予知に関する研究
大嶋俊一 金沢工業大学・バイオ・化学部 教授	高骨伝導能と抗菌性を兼ね備えた人工足場材料の開発を指向したフッ素添加 Diamond-Like Carbon を用いた表面改質技術の解明
片平和俊 理化学研究所・開拓研究本部 - 真任研究員	PCD工具の超硬合金加工における材料除去モデル解析と SCD 微細ポールエンドミルの創製と実践
佐藤 遼	ピコメートル精度加工を実現するエンコーダ用回折格子のリアルタイム機上 「絶対」格子ピッチ計測法の開発
伊藤佑介	応力波駆動電子励起によるセラミクスの超高速フェムト秒レーザ加工
太田貴之	イオン照射型スパッタリングを用いた窒化クロム系耐摩耗膜コーティング
片宗優貴	リン添加による多結晶CVD ダイヤモンド膜の表面平滑化に向けた結晶配向性の 制御
小谷野 智広	ワイヤ放電加工における放電点検出を利用したワイヤ電極温度分布のリアルタ イム測定
岩井 学	超音波振動援用ギアスカイビング法による微小歯車の加工性能
武藤 泉	ステンレス鋼機械加工面の高耐食化:有害硫化物のマイクロ電気化学解析と レーザー処理による無害化
山田啓司	研削加工の加工能率を向上するためのインプロセス・レーザドレッシング・システムの有効性検証
松田健二	新しい材料設計手法に基づく「超耐熱性多元系窒化物ナノ複相構造膜」の開発
崔 埈豪	環境負荷低減のための画期的水潤滑システムの開発
	CMP におけるミクロなスラリー流れと研磨能率との関係に関する研究
	同軸型アークプラズマ堆積法のプロセス開発による汎用工具材料上へのナノダ イヤモンド被膜
	超砥粒砥石において粒度および集中度のみを用いた作用砥粒数および表面粗さ の理論的導出
	放電中における電極材料の移行現象を用いた表面改質と肉盛り特性
児玉紘幸	工具突き出し長さに応じて最適化された切削条件補正システムの構築と性能評 価
谷 貴幸	放電加工における溶融残留層の3次元計測および除去効率の向上のための電源 開発
太田雅人	超短パルスレーザーと固体相互作用の時間領域多階層単発計測
	光応答性分子量変換材料によるリライタブル微細加工法の創生
藤田 隆	PCD微小切れ刃工具による SiC 基板表面の鏡面研削加工技術の開発
	熱化学反応を利用したダイヤモンド研磨における温度分布制御と工具表面制御 の試み
三ツ石 方也 東北大学・大学院工学研究科 教授	フレキシブル基板表面における半導体ナノ積層体の微細加工
	理化学研究所・開拓研究本部 専任研究員 佐藤 遼 東北大学大学院・工学研究科 助教 伊藤 大学・工学部 講師 東京大学・理工学部 教授 「東京大学・理工学部 教授 「大学院工学研究院 准教授 「大学院工学研究院 准教授 「大学院工学研究域・機械工学系 准教授 「大学・大学院工学部 教授 「おいている。」 「はいている。」 「はいているいるいる。」 「はいているいるいる。」 「はいているいるいるいるいるいるいるいるいるいるいるいるいる

No	助成対象者	テーマ
25	田辺郁男 三条市立大学・工学部 教授	穴あけ加工における最適加工条件探索プログラムの開発
26	横田知宏 神奈川県立産業技術総合研究所 上席研究員	機械学習を用いたNC 工作機械のフィードバック制御手法の開発
27	夏原大悟 名古屋大学・大学院工学研究科 研究員	マイクロ混合技術を応用したメソ空間制御金属ナノマテリアル加工技術の開発
28	朴 亨原 公立小松大学・生産システム科学部 准教授	切削速度 2000m/min までの高速旋削による 6000 系アルミ合金の切削表面に起こる切削挙動と冶金現象を同時に探求
29	和田任弘 大和大学・理工学部 教授	ドリル径5mm 以下のドリルによるL/D40~50 の高能率・高精度深穴加工を達成する「高圧クーラント深穴加工」に関する研究
30	大木基史 新潟大学·自然科学系 准教授	高耐摩耗性・高じん性WC-Ni 硬質皮膜の適用によるプレスせん断金型の長寿命化
31	孫 栄硯 大阪大学大学院・工学研究科 助教	単結晶GaN ウエハの高能率ドライ研磨法の開発
32	太田 稔 神奈川大学·工学研究所 客員教授	複合メカノケミカル反応による cBN ホイールのポリッシュツルーイング技術の 開発
33	乾 晴行 京都大学·大学院工学研究科 教授	溶融アルミめっき鋼板の Al5Fe2金属間化合物めっき層の室温変形メカニズムープレス加工など加工時の変形能改善に向けて

国際交流助成

No	助成対象者	国際会議の名称
1	由井明紀	第26回国際先端砥粒加工シンポジウム
	神奈川大学・工学部 教授	(ISAAT2024)
2	田中秀明	第26回国際先端砥粒加工シンポジウム
	湘南工科大学・工学部 教授	(ISAAT2024)
2	長坂明彦	第9回アジア鉄鋼国際会議
L	長野高専・工学科 嘱託教授	59円 / グ / 妖聊国際云巌
4	瀧野日出雄	39回米国精密工学会年次大会
	千葉工業大学・工学部 教授 ―――――――――――――――――――――――――――――――――――	(39th ASPE Annual Meeting)
5	米田鈴枝	環太平洋電気化学および固体材料の科学に関する会議
L	北海道大学大学院・工学研究院 助教	(PRiME2024)